Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chaos Solitons Fractals ; 166: 112914, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2120272

ABSTRACT

The prevalence of COVID-19 has been the most serious health challenge of the 21th century to date, concerning national health systems on a daily basis, since December 2019 when it appeared in Wuhan City. Nevertheless, most of the proposed mathematical methodologies aiming to describe the dynamics of an epidemic, rely on deterministic models that are not able to reflect the true nature of its spread. In this paper, we propose a SEIHCRDV model - an extension/improvement of the classic SIR compartmental model - which also takes into consideration the populations of exposed, hospitalized, admitted in intensive care units (ICU), deceased and vaccinated cases, in combination with an unscented Kalman filter (UKF), providing a dynamic estimation of the time dependent system's parameters. The stochastic approach is considered necessary, as both observations and system equations are characterized by uncertainties. Apparently, this new consideration is useful for examining various pandemics more effectively. The reliability of the model is examined on the daily recordings of COVID-19 in France, over a long period of 265 days. Two major waves of infection are observed, starting in January 2021, which signified the start of vaccinations in Europe providing quite encouraging predictive performance, based on the produced NRMSE values. Special emphasis is placed on proving the non-negativity of SEIHCRDV model, achieving a representative basic reproductive number R 0 and demonstrating the existence and stability of disease equilibria according to the formula produced to estimate R 0 . The model outperforms in predictive ability not only deterministic approaches but also state-of-the-art stochastic models that employ Kalman filters. Furthermore, the relevant analysis supports the importance of vaccination, as even a small increase in the dialy vaccination rate could lead to a notable reduction in mortality and hospitalizations.

2.
30th International Conference on Electrical Engineering, ICEE 2022 ; : 78-83, 2022.
Article in English | Scopus | ID: covidwho-1992644

ABSTRACT

Spreading Covid19 has significantly impacted humans' affairs worldwide, either economically or in a sanitary manner. Besides social distance and hospitalization, making and introducing different vaccines help us ameliorate infection and mortality rates. In this research, we use a nonlinear dynamic model for Covid19, with eight states named susceptible, exposed, infected, quarantined, hospitalized, recovered, deceased, and insusceptible populations. Also, we use social distancing, hospitalization, and vaccination rate as three control inputs. This research aims to stop the Covid-19 from spreading worldwide and minimize exposed, infected and deceased populations using model predictive control. Meanwhile, the measurements data defined in terms of the hospitalized and deceased populations are used to estimate other unmeasurable states by an unscented Kalman filter. In other words, the insusceptible, exposed, infected, quarantined, recovered, and susceptible individuals cannot be identified precisely because of the asymptomatic infection of the Covid-19 in some cases, its incubation period, and the lack of an adequate community screening. Finally, experimental results show that the proposed algorithm is feasible and efficient to decrease infection and mortality rates compared to the uncontrolled scenario. © 2022 IEEE.

3.
Math Biosci Eng ; 18(6): 7685-7710, 2021 09 06.
Article in English | MEDLINE | ID: covidwho-1405479

ABSTRACT

Mathematical models are widely recognized as an important tool for analyzing and understanding the dynamics of infectious disease outbreaks, predict their future trends, and evaluate public health intervention measures for disease control and elimination. We propose a novel stochastic metapopulation state-space model for COVID-19 transmission, which is based on a discrete-time spatio-temporal susceptible, exposed, infected, recovered, and deceased (SEIRD) model. The proposed framework allows the hidden SEIRD states and unknown transmission parameters to be estimated from noisy, incomplete time series of reported epidemiological data, by application of unscented Kalman filtering (UKF), maximum-likelihood adaptive filtering, and metaheuristic optimization. Experiments using both synthetic data and real data from the Fall 2020 COVID-19 wave in the state of Texas demonstrate the effectiveness of the proposed model.


Subject(s)
COVID-19 , Humans , Models, Theoretical , SARS-CoV-2
4.
IEEE Access ; 8: 99445-99457, 2020.
Article in English | MEDLINE | ID: covidwho-1291981

ABSTRACT

It can be life-saving to monitor the respiratory rate (RR) even for healthy people in real-time. It is reported that the infected people with coronavirus disease 2019 (COVID-19), generally develop mild respiratory symptoms in the early stage. It will be more important to continuously monitor the RR of people in nursing homes and houses with a non-contact method. Conventional, contact-based, methods are not suitable for long-term health monitoring especially in-home care services. The potentials of wireless radio signals for health care applications, such as fall detection, etc., are examined in literature. In this paper, we focus on a device-free real-time RR monitoring system using wireless signals. In our recent study, we proposed a non-contact RR monitoring system with a batch processing (delayed) estimation method. In this paper, for real-time monitoring, we modify the standard joint unscented Kalman filter (JUKF) method for this new and time-critical problem. Due to the nonlinear structure of the RR estimation problem with respect to the measurements, a novel modification is proposed to transform measurement errors into parameter errors by using the hyperbolic tangent function. It is shown in the experiments conducted with the real measurements taken using healthy volunteers that the proposed modified joint unscented Kalman filter (ModJUKF) method achieves the highest accuracy according to the windowing-based methods in the time-varying RR scenario. It is also shown that the ModJUKF not only reduces the computational complexity approximately 8.54% but also improves the accuracy 36.7% with respect to the standard JUKF method.

SELECTION OF CITATIONS
SEARCH DETAIL